3,936 research outputs found

    Automation of the Continuous Coagulation Monitor

    Get PDF
    The development of automation in the past 50 years has paralleled the accelerating growth of today’s vast technological society. Automatic control systems are indispensable extensions of man\u27s brain that enable him to monitor and regulate his complex environment. The principles of automatic control have a wide range of applications and interests in virtually every scientific field. The need for automatic control systems in vital applications of environmental engineering is both real and urgent. Extensive pollution has resulted in unavoidable water re-use and in the inevitable establishment of stringent effluent standards. Both water and wastewater treatment processes have necessarily become more advanced and complicated. Automation can reliably provide the critical, sophisticated control required to maintain adequate treatment. In his pollution abatement or water quality program, the environmental engineer can employ automatic control systems to continuously and accurately monitor contaminant levels or the removal efficiencies of treatment processes and to effect rapid responses when treatment adjustment becomes necessary by automatically adjusting processes

    Anchoring historical sequences using a new source of astro-chronological tie-points

    Get PDF
    The discovery of past spikes in atmospheric radiocarbon activity, caused by major solar energetic particle events, has opened up new possibilities for high-precision chronometry. The two spikes, or Miyake Events, have now been widely identified in tree-rings that grew in the years 775 and 994 CE. Furthermore, all other plant material that grew in these years would also have incorporated the anomalously high concentrations of radiocarbon. Crucially, some plant-based artefacts, such as papyrus documents, timber beams and linen garments, can also be allocated to specific positions within long, currently unfixed, historical sequences. Thus, Miyake Events represent a new source of tie-points that could provide the means for anchoring early chronologies to the absolute timescale. Here, we explore this possibility, outlining the most expeditious approaches, the current challenges and obstacles, and how they might best be overcome.Comment: 11 pages, accepted to Royal Society Proc

    Data Dissemination Performance in Large-Scale Sensor Networks

    Full text link
    As the use of wireless sensor networks increases, the need for (energy-)efficient and reliable broadcasting algorithms grows. Ideally, a broadcasting algorithm should have the ability to quickly disseminate data, while keeping the number of transmissions low. In this paper we develop a model describing the message count in large-scale wireless sensor networks. We focus our attention on the popular Trickle algorithm, which has been proposed as a suitable communication protocol for code maintenance and propagation in wireless sensor networks. Besides providing a mathematical analysis of the algorithm, we propose a generalized version of Trickle, with an additional parameter defining the length of a listen-only period. This generalization proves to be useful for optimizing the design and usage of the algorithm. For single-cell networks we show how the message count increases with the size of the network and how this depends on the Trickle parameters. Furthermore, we derive distributions of inter-broadcasting times and investigate their asymptotic behavior. Our results prove conjectures made in the literature concerning the effect of a listen-only period. Additionally, we develop an approximation for the expected number of transmissions in multi-cell networks. All results are validated by simulations

    Efficient Methods to Assimilate Satellite Retrievals Based on Information Content

    Get PDF
    One of the outstanding problems in data assimilation has been and continues to be how best to utilize satellite data while balancing the tradeoff between accuracy and computational cost. A number of weather prediction centers have recently achieved remarkable success in improving their forecast skill by changing the method by which satellite data are assimilated into the forecast model from the traditional approach of assimilating retrievals to the direct assimilation of radiances in a variational framework. The operational implementation of such a substantial change in methodology involves a great number of technical details, e.g., pertaining to quality control procedures, systematic error correction techniques, and tuning of the statistical parameters in the analysis algorithm. Although there are clear theoretical advantages to the direct radiance assimilation approach, it is not obvious at all to what extent the improvements that have been obtained so far can be attributed to the change in methodology, or to various technical aspects of the implementation. The issue is of interest because retrieval assimilation retains many practical and logistical advantages which may become even more significant in the near future when increasingly high-volume data sources become available. The central question we address here is: how much improvement can we expect from assimilating radiances rather than retrievals, all other things being equal? We compare the two approaches in a simplified one-dimensional theoretical framework, in which problems related to quality control and systematic error correction are conveniently absent. By assuming a perfect radiative transfer model and perfect knowledge of radiance and background error covariances, we are able to formulate a nonlinear local error analysis for each assimilation method. Direct radiance assimilation is optimal in this idealized context, while the traditional method of assimilating retrievals is suboptimal because it ignores the cross-covariances between background errors and retrieval errors. We show that interactive retrieval assimilation (where the same background used for assimilation is also used in the retrieval step) is equivalent to direct assimilation of radiances with suboptimal analysis weights. We illustrate and extend these theoretical arguments with several one-dimensional assimilation experiments, where we estimate vertical atmospheric profiles using simulated data from both the High-resolution InfraRed Sounder 2 (HIRS2) and the future Atmospheric InfraRed Sounder (AIRS)

    Consumer Demand for Crop and Livestock Commodities in Japan: Preliminary Estimates of the Consumption Impact of Reduced Prices

    Get PDF
    Japan's 1965- 1985 demand for crops and livestock is estimated. Income has positive impact on livestock and grains & oilseeds consumption; livestock price has significant own-price effect in livestock consumption and is complimentary in grains & oilseeds consumption. If Japan were to lower livestock prices, both livestock and grains & oilseeds consumption would increase
    • …
    corecore